Description of 3-PG

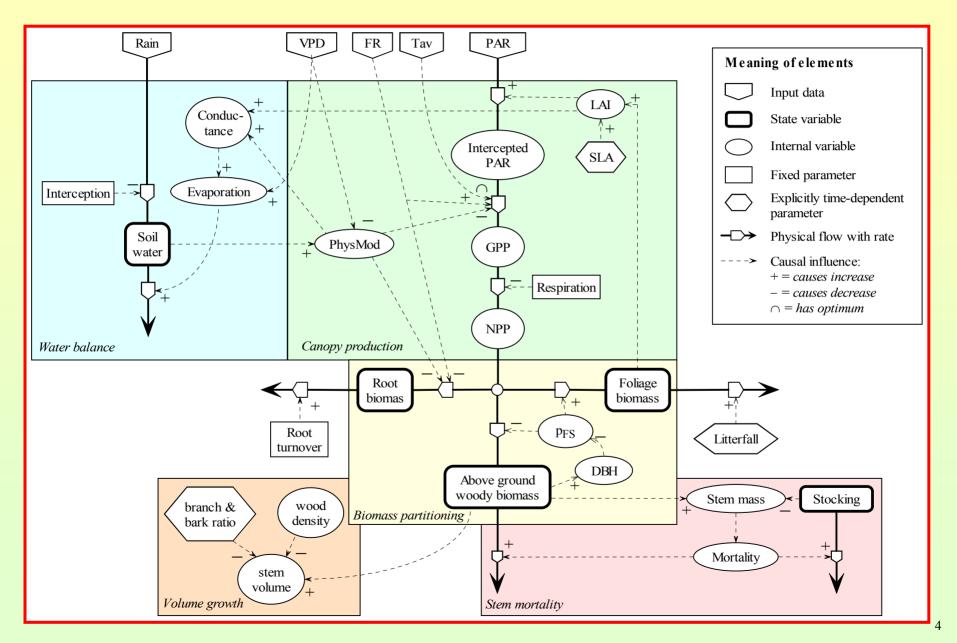
Peter Sands

CSIRO Forestry and Forest Products and CRC for Sustainable Production Forestry

1

What is 3-PG?

- Simple, process-based model to predict growth and development of even-aged stands.
- Uses basic mean-monthly climatic data, and simple site factors and soil descriptors.
- Generates:

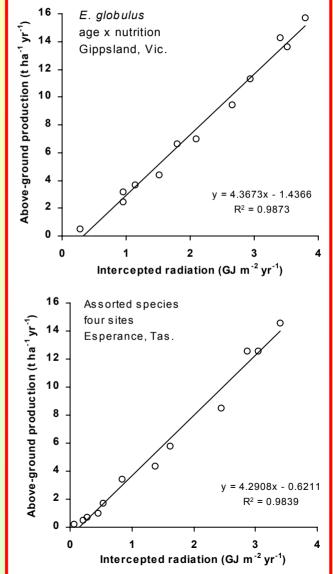

foliage, woody tissue and root biomass, conventional stand attributes (volume, BA, stocking), soil water content and water usage.

- Runs on monthly time step.
- Parameterised using stand-level data.

Main Components of 3-PG

- *Production of biomass* Based on environmental modification of light use efficiency and constant ratio of NPP to GPP.
- *Biomass partitioning* Affected by growing conditions and tree size.
- Stem morality Based on self-thinning rule.
- *Soil water balance* A single soil layer model with evapotranspiration determined from Penman-Monteith equation.
- *Stand properties* Determined from biomass pools and assumptions about specific leaf area, branch+bark fraction, and wood density.

Structure and Causal Influences


Biomass Production and Intercepted Solar Radiation

Observation shows:

- above-ground production linearly related to intercepted radiation
- gross production proportional to intercepted radiation.

Slope of these relationships is light use efficiency ϵ (g_{DM} MJ⁻¹).

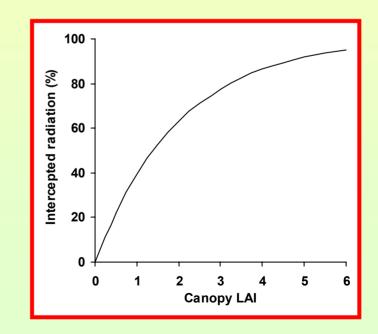
This finding is the basis for many simple models.

Light Use Efficiency

Light use efficiency

- is affected by climatic factors (e.g. temperature) and site factors (e.g. soil-water status)
- varies seasonally, but annual values more stable.

This concept forms basis of many simple models, e.g.


- *GrowEst* grasslands; based on T & soil water; multiplicative
- *PlantGro* many crops; many environmental & site factors; law of the minimum
- *3-PG* trees; based on T, VPD, soil water & nutrition; mainly multiplicative

Calculating Intercepted Radiation

Beer's law determines light transmitted through canopy. Thus radiation intercepted by the canopy is:

$$Q_{\rm int} = (1 - e^{-kL})Q_0$$

Note diminishing returns from high leaf area indices

Gross Canopy Production

Putting these together, total gross production by the canopy is

$$P_g = \alpha_C (1 - e^{-kL}) Q_0$$

where canopy quantum efficiency $\alpha_{\rm C}$ (mol mol⁻¹) or light use efficiency ϵ , $g_{\rm DM}$ MJ⁻¹:

- measure efficiency of conversion of solar radiation into biomass
- depend on environmental and site factors.

Net Canopy Production

Respiration assumed to be constant fraction of gross canopy production. Thus net canopy production is:

$$P_n = YP_g$$
$$= \alpha_C Y (1 - e^{-kL})Q_0$$

where $Y \approx 0.47$.

This is a contentious assumption, which greatly simplifies treatment of respiration.

Growth Modifiers in 3-PG

Each environmental factor is represented by a growth modifier = function of factor which varies between 0 (total limitation) and 1 (no limitation).

Factor	Modifier	Parameters
Vapor pressure deficit	$f_{VPD}(D)$	k _D
Soil water	$f_{SW}(\theta)$	$ heta_{max}$, $c_{ heta}$, $n_{ heta}$
Temperature	$f_T(T_{av})$	T_{min} , T_{opt} , T_{max}
Frost	$f_F(d_f)$	k_F
Site nutrition	$f_N(FR)$	f_{N0}
Stand age	$f_{age}(t)$	n_{age} , r_{age}

Effects on Canopy Production

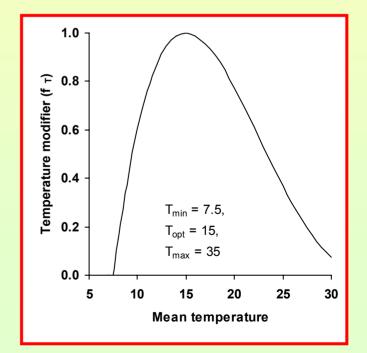
All modifiers affect canopy production:

$$\alpha_{C} = f_{T} f_{F} f_{N} \min\{f_{VPD}, f_{SW}\} f_{age} \alpha_{Cx}$$

where α_{Cx} is maximum canopy quantum efficiency.

In 3-PG the combination of modifiers

$$\varphi = \min\{f_{VPD}, f_{SW}\}f_{age}$$

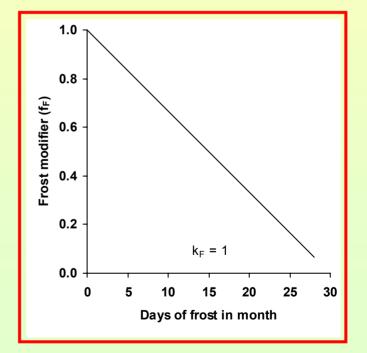

also affects canopy conductance, and is called *PhysMod* in the program.

Temperature Growth Modifier $f_T(T_a)$

$$f_{T}(T_{a}) = \left(\frac{T_{a} - T_{min}}{T_{opt} - T_{min}}\right) \left(\frac{T_{max} - T_{a}}{T_{max} - T_{opt}}\right)^{(T_{max} - T_{opt})/(T_{opt} - T_{min})}$$

where

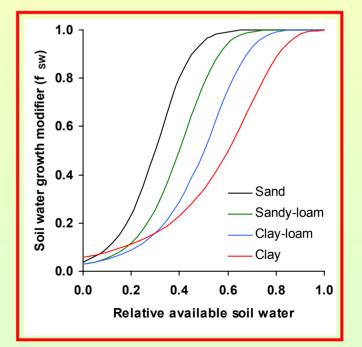
 T_a = mean monthly daily temperature T_{min} = minimum temperature for growth T_{opt} = optimum temperature for growth T_{max} = maximum temperature for growth



Frost Growth Modifier $f_F(d_F)$

$$f_F(d_F) = 1 - k_F(d_F/30)$$

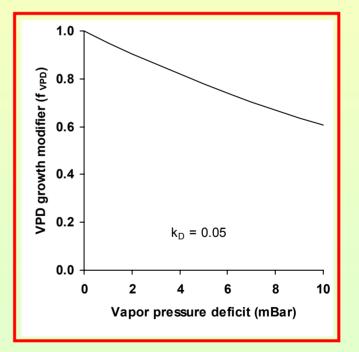
where


 d_F = number of frost days in month k_F = number of days of production lost for each day of frost.

Soil-water Growth Modifier $f_{SW}(\theta)$ $f_{SW}(\theta) = \frac{1}{1 + \left[(1 - \theta / \theta_x) / c_\theta \right]^{n_\theta}}$

where

- θ = current available soil water
- θ_x = maximum available soil water
- c_{θ} = relative water *deficit* for 50% reduction.
- n_{θ} = power determining shape of soil water response.

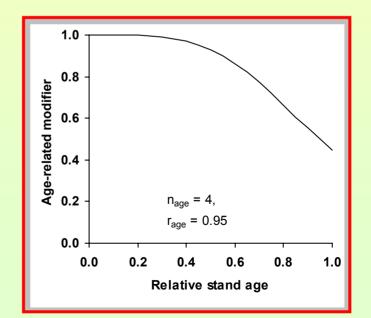


VPD Growth Modifier $f_{VPD}(d)$

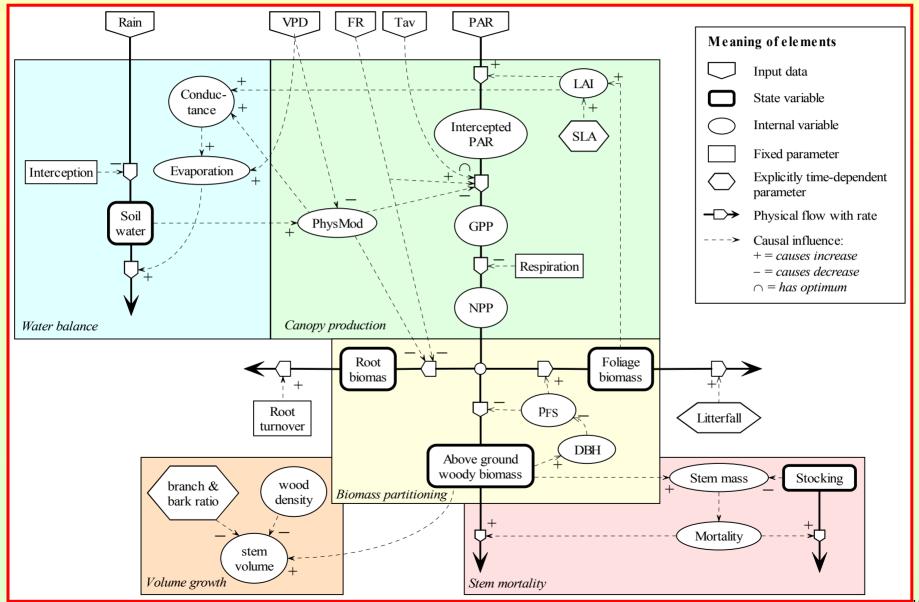
 $f_{VPD}(D) = e^{-k_D D}$

where

D = current vapor pressure deficit k_D = strength of VPD response.



Age-related Growth Modifier $f_{age}(t)$


$$f_{age}(t) = \frac{1}{1 + \left(t / r_{age} t_x\right)^{n_{age}}}$$

where

- t =current stand age
- t_x = likely maximum stand age
- r_{age} = relative stand age for 50% growth reduction
- n_{age} = power determining strength of growth reduction

Structure and Causal Influences

Biomass Partitioning

NPP is partitioned into biomass pools (t_{DM} ha⁻¹):

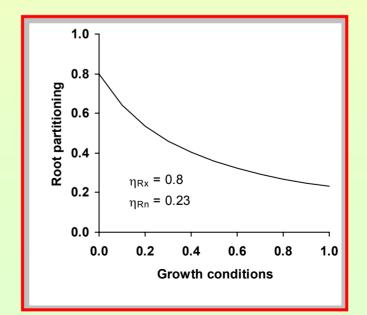
- foliage (W_F) ,
- above-ground woody tissue (W_S)
- roots (W_R)

Partitioning rates (η_F , η_R and η_S) depend on growth conditions and stand DBH.

Litter-fall (γ_F) and root-turnover (γ_R) also taken into account. Thus:

$$\Delta W_F = \eta_F P_n - \gamma_F W_F$$
$$\Delta W_R = \eta_R P_n - \gamma_R W_R$$
$$\Delta W_S = \eta_S P_n$$

Root Partitioning


Partitioning to roots affected by growth conditions through φ (*PhysMod*) and by soil fertility:

$$\eta_{R} = \frac{\eta_{Rx}\eta_{Rn}}{\eta_{Rn} + (\eta_{Rx} - \eta_{Rn})m\varphi}$$

where

$$m = m_0 + (1 - m_0)FR$$

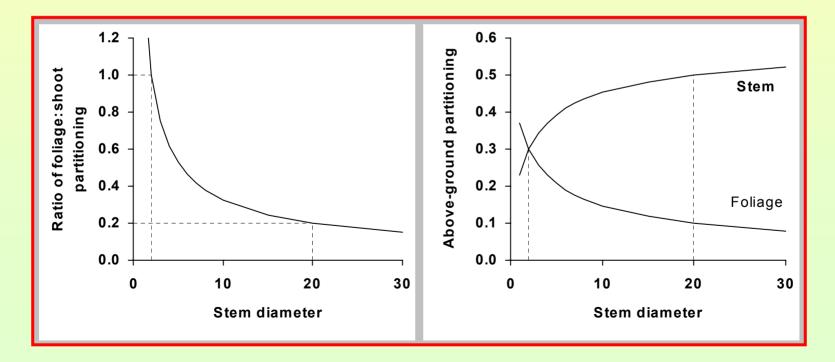
- η_{Rx} = root partitioning under very poor conditions
- η_{Rn} = root partitioning under optimal conditions

Foliage and Stem Partitioning

Above-ground partitioning based on foliage:stem partitioning ratio

$$p_{FS} = \eta_F / \eta_S = aB^n$$

- *B* is diameter at breast height determined from an allometric relationship between stem mass and *B*
- *a*, *b* are coefficients determined from p_{FS} at B = 2 and 20 cm.


Then

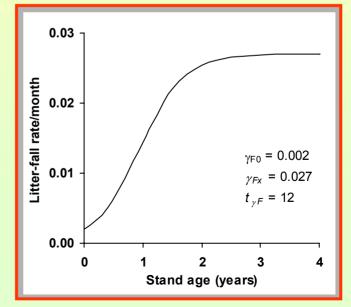
$$\eta_S = \frac{1 - \eta_R}{1 + p_{FS}} , \quad \eta_F = p_{FS} \eta_S$$

Above-ground Partitioning v Tree-size

Increasing DBH decreases foliage partitioning and increases stem partitioning. Graphs show response when

$$p_{FS}(2) = 1, p_{FS}(20) = 0.25, \eta_{R} = 0.4$$

Root-turnover and Litter-fall


Root-turnover is a constant fraction of root biomass ($\gamma_R = 0.015 \text{ month}^{-1}$).

Litter-fall is age-dependent fraction of foliage biomass:

$$\gamma_F(t) = \frac{\gamma_{Fx} \gamma_{F0}}{\gamma_{F0} + (\gamma_{Fx} - \gamma_{F0}) e^{-kt}} \quad , \quad k = \frac{1}{t_{\gamma F}} \ln \left(1 + \frac{\gamma_{Fx}}{\gamma_{F0}} \right)$$

where

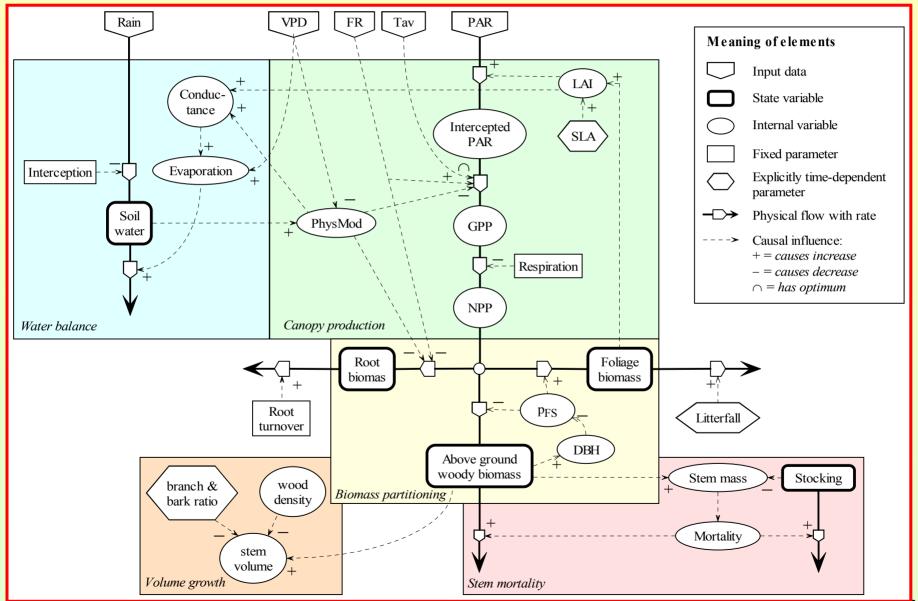
 γ_{F0} = litter-fall rate at age 0 γ_{Fx} = maximum litter-fall rate $t_{\gamma F}$ = age when $\gamma_F = \frac{1}{2}(\gamma_{F0} + \gamma_{Fx})$

Stem Mortality

Based on self-thinning where average stem weight for current stocking

 $w_{Sx}(N) \le w_{Sx0}(1000/N)^{3/2}$ (kg/tree)

and $w_{Sx0} = \max$. stem weight at 1000 trees ha⁻¹.


If at 1 then $w_S \le w_{Sx}(N) \Rightarrow$ no mortality If at 2 then $w_S \ge w_{Sx}(N) \Rightarrow$ self-thin to 2'

$$N' = 1000 (w_{Sx0} / w_S)^{2/3}$$
$$\Delta W_S = -\gamma_S \frac{(N - N')}{N} W_S$$

where $\gamma_S \approx 0.2$ is a parameter.

Structure and Causal Influences

Soil Water Balance

Soil water balance model based on single soil layer.

Uses monthly time steps.

Inputs:

rainfall and irrigation

Losses are:

- interception = fixed % of rainfall
- evapotranspiration determined using Penman-Monteith equation
- excess over field capacity lost as run off

Evapotranspiration

Evapotranspiration is calculated using the *Penman-Monteith* equation.

Directly affected by VPD and radiation.

Canopy conductance:

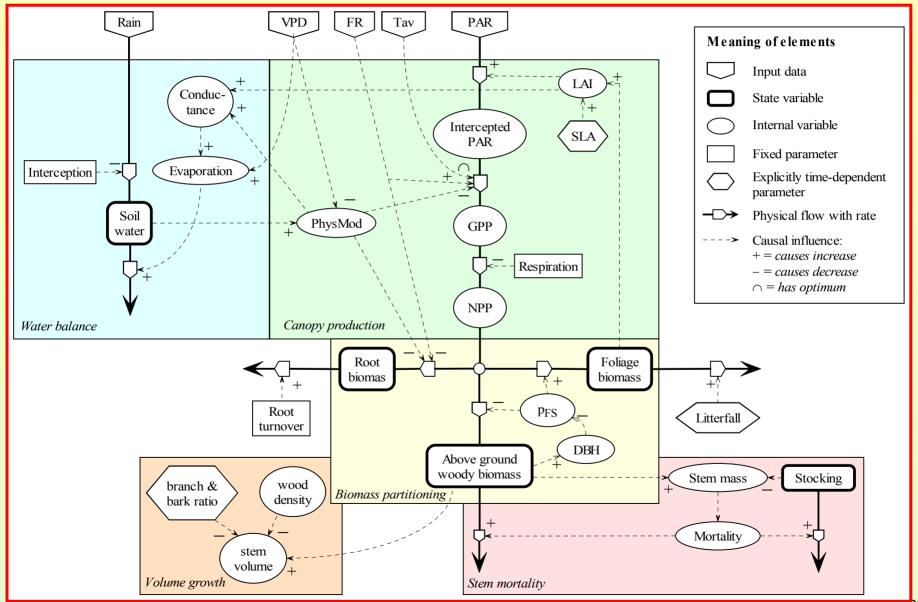
- determined by LAI
- affected by growth conditions VPD, soil water and age.

Boundary layer conductance:

• is assumed constant (0.2 m s⁻¹)


Calculation of Stomatal Conductance

Canopy conductance is affected by VPD, soil water and stand age through φ (= *PhysMod* in 3-PG code), and increases with canopy LAI:


$$g_C = g_{Cx} \varphi \min\{L/L_{gC}, 1\}$$

where

 $\varphi = \min\{f_{VPD}, f_{SW}\} f_{age}$ $g_{Cx} = \max \text{imum conductance}$ $L_{gC} = \text{LAI at max. conductance}$

Structure and Causal Influences

