FOR/FES-599

3-PG FOREST GROWTH MODEL

Dr. Richard H. Waring

Dr. Carlos A. Gonzalez-Benecke

Lecture 2

Growth Modifiers

Tropical Rainforest: Canopy Stomatal Conductance Relationships

 $g_s = g_{smax} \cdot f(D) \cdot f(\delta \psi) \cdot f(PAR) \cdot f(N) \cdot f(T) \cdot f(CO_2)$

Tropical Rainforest: Canopy Stomatal Conductance Relationships

Light-Use and Water-Use Efficiency response to CO₂

Figure 5: modeled relationship light-use efficiency (left) and relative leaf stomatal conductance (gs) (right) with ambient CO₂ concentrations. © The Modeling and Simulation Society of Australia and New Zealand Inc., with permission, taken from Almeida et al. (2009).

Stomatal Conductance and Soil Drought

Waring, R.H., and W.E. Winner. 1995. Assessing the availability of resources and quantifying their constraints upon terrestrial primary productivity. IN: E. Fuentes and R. Lawford (eds.). p. 89-102. High latitude rainforests and river systems. Springer Verlag, New York.

Stomatal Conductance and Soil Drought

Soils differ in how they release water

Landsberg & Waring (1997)

Fig. 2. Relationship between the soil water modifier (f_{θ}) and the moisture ratio (r_{θ}) for four soil types.

Effect of Subfreezing Temperature on Stomata and GPP

Hadley (2000) Arctic, Antarctic and Alpine Res. 32:368-374.

Optimum Temperature

Table 6.2. Optimum Temperature for Photosynthesis Compared with Actual Mid-summer Temperatures for Five Genera of Native New Zealand and North American Tree Species. From Hawkins and Sweet, 1989

Species	Optimum Temperature, °C	Mid-Summer Temperature, °C	Difference, °C
New Zealand			
Agathis australis	27.0	22.2	4.8
Dacrycarpus dacrydiodes	27.0	17.9	9.1
Dacrydium cupressinum	27.0	16.8	10.2
Nothofagus solandri	27.0	17.0	10.0
Podocarpus totara	27.0	21.5	5.5
Mean	27.0	19.1	+7.9
North America			
Larix decudua	17.0	19.0	-2.0
Pinus radiata	23.0	21.0	2.0
Pseudotsuga menziesii	21.0	20.2	0.8
Sequoia sempervirens	19.0	17.0	2.0
Tsuga heterophylla	18.0	20.2	-2.2
Mean	19.6	19.4	+0.2

VPD Response of Northwest Forest Species

Waring and Franklin, 1979. Science

As Trees Grow, They Produce Less Foliage and More Branches

Waring et al. (2016) For. Ecol.& Manage.

Fig. 4. As tree above-ground biomass increases, the ratio of needle to branch biomass in Douglas-fir decreases exponentially (Bartelin, 1996). Similar plots are presented for three species of southern pines: loblolly (Pinus toeda), longleaf (P. palustris), and slash (P. elliottii). Eucalyptus grandis data were obtained from Almeida (2012). Graph drafted by Carlos Gonzalez-Benecke using some original data (Gonzalez-Benecke et al., 2014, 2015).

Hydraulic Conductance in Function of Age

As a result of the shift in the partitioning of growth in mass, photosynthesis is constrained by less efficient plumbing as expressed by a drop in total hydraulic conductance (Ga)

All Modifiers Affect Canopy Production and Transpiration

$$NPP = Q_0^* \left(11 - ee^{-k*LAI} \right) * \alpha_{Cx}^* R * f_i$$

$$f_i = f_{\mathsf{T}} f_{\mathsf{F}} f_{\mathsf{N}} f_{\mathsf{D}} f_{\mathsf{0}} f_{\mathsf{age}} f_{\mathsf{C}\alpha}$$
Temperature Frost Nutrition VPD ASW Age CO₂

Gc= Gcmax * f_j

$$f_j = f_D f_\theta f_F f_{Cg}$$

VPD ASW Frost CO₂

General References

- Waring, R.H. and J.J. Landsberg. 2011. Generalizing plant water relations to landscapes. *Journal of Plant Ecology* 4:101- 113.
- Waring, R., Landsberg, J. and Linder, S., 2016. Tamm Review: Insights gained from light use and leaf growth efficiency indices. Forest Ecology and Management, 379:232-242.
- Landsberg, J., and Waring, R. 2017. Water relations in tree physiology: where to from here? *Tree Physiology* (in press). pdf

